\begin{tabular}{|c|c|}
\hline 20 \& Answers \\
\hline \begin{tabular}{l}
23. If \((x-2)^{2}=1600, x-2= \pm 40\). Thus \(x=42\) or -38 , and \(x-4=38\) or -42 . \\
A) -42 \\
B) -34 \\
C) 34 \\
D) 36
\end{tabular} \& \[
\begin{aligned}
\& 23 . \\
\& \mathrm{A}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
24. Since the prime factorization of 260 is (2)(2)(5)(13), the least possible value of \(x\) is 13 . \\
A) 10 \\
B) 13 \\
C) 26 \\
D) 30
\end{tabular} \& \begin{tabular}{l}
\[
24 .
\] \\
B
\end{tabular} \\
\hline \begin{tabular}{l}
25. Avg. speed \(=\) (total dist./total time), so Don Q's avg. speed is \((60+60) /[60 /(3 r)+60 /(6 r)]=\) \(120 /(30 / r)=4 r\). \\
A) \(4 r\) \\
B) \(4.5 r\) \\
C) \(5 r\) \\
D) \(5.5 r\)
\end{tabular} \& 25.
A \\
\hline \begin{tabular}{l}
26. If the integer is \(10 t+u\), then the difference bebetween this integer and the integer with the digits reversed is \((10 t+u)-(10 u+t)=9 t-9 u=\) 36. Dividing by \(9, t-u=4\). \\
A) 4 \\
B) 6 \\
C) 8 \\
D) 9
\end{tabular} \& 26.
A \\
\hline \begin{tabular}{l}
27. My sister has \(s\) dollars, and I have \(d\) dollars more than she has. If together we have a total of \(t\) dollars, then \(s+(s+d)=t\), so \(2 s=t-d\) and \(s=(t-d) / 2\). \\
A) \(t-2 d\) \\
B) \(\frac{t}{2}-d\) \\
C) \(t-\frac{d}{2}\) \\
D) \(\frac{t-d}{2}\)
\end{tabular} \& 27.
D \\
\hline \begin{tabular}{l}
28. Choice D is the product of 3 consecutive integers, so it's divisible by 3 . \\
A) \(x(x-3)(x-6)\) B) \(x(x+3)(x-3)\) \\
C) \(x(x+7)(x-2)\) \\
D) \(x(x+1)(x-1)\)
\end{tabular} \& \[
\begin{aligned}
\& 28 . \\
\& \text { D }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
29. The expression \(\frac{2 x+1}{3 x-3}\) becomes \(\frac{2\left(\frac{4}{x}\right)+1}{3\left(\frac{4}{x}\right)-3}=\frac{\frac{8}{x}+1}{\frac{12}{x}-3}=\frac{8+x}{12-3 x}\). \\
A) \(\frac{2 x+1}{3 x-3}\) \\
B) \(\frac{3 x-3}{2 x+1}\) \\
C) \(\frac{8+x}{12-3 x}\) \\
D) \(\frac{12 x-3}{8 x+1}\)
\end{tabular} \& 29.
C \\
\hline \begin{tabular}{l}
30. The inequality is true if \(x=-3\) or -4 . If \(x<-4\) or \(-3<x<5\), it is false. If \(x=6\) or 7 , it is true.
\[
\frac{(x+3)(x+4)}{x-5} \geq 0
\] \\
My car has 4 passengers. \\
A) 2 \\
B) 3 \\
C) 4 \\
D) 5
\end{tabular} \& 30.

C \\
\hline
\end{tabular}

Visit our Web site at http://www.mathleague.com

2012-2013 ALGEBRA COURSE 1 CONTEST SOLUTIONS	Answers
1. If $x=2013$, then $(x-2012)^{(x-2013)}=(2013-2012)^{(2013-2013)}=1^{0}=1$. A) 0 B) 1 C) 2 D) 10	1. B
2. If $a=5$, then $4 a^{3}-3 a^{2}+2 a-1=4(5)^{3}-3(5)^{2}+2(5)-1=500-75+10-1$. A) 39 B) 125 C) 434 D) 586	$2 .$ C
3. Fred and Ginger danced for $\frac{2013}{x}$ hours last year. Since 2013 is not divisible by 13, x cannot be 13 . A) 3 B) 11 C) 13 D) 61	3. C
4. We may rewrite $x^{2}-4 x-12$ as $(x-6)(x+2)$, so $x+2$ is a factor. A) $x+2$ B) $x-2$ C) x D) $x-8$	4. A
5. $2^{400}+2^{400}=2\left(2^{400}\right)=\left(2^{1}\right)\left(2^{400}\right)=2^{400+1}=2^{401}$. A) 2^{401} B) 2^{800} C) 4^{400} D) 4^{800}	5. A
6. If $\frac{p}{q}=\frac{2}{3}$, then $\frac{-p}{-q}=\frac{-2}{-3}=\frac{2}{3}$. A) $-\frac{2}{3}$ B) $\frac{-2}{3}$ C) $\frac{2}{-3}$ D) $\frac{2}{3}$	6. D
7. The number of 5 kg weights and 10 kg weights I have is $4 w$ and $2 w$, respectively. Hence, $5(4 w)+10(2 w)=200$, so $40 w=200$ and $w=5$. A) 4 B) 5 C) 10 D) 20	7. B
8. $\left(3 x^{3}-4 x^{2}\right)+\left(2 x^{2}-3 x\right)-\left(3 x^{3}-4\right)=3 x^{3}-4 x^{2}+2 x^{2}-3 x-3 x^{3}+4=-2 x^{2}-3 x+4$. A) $2 x^{2}-3 x-4$ B) $2 x^{2}-3 x+4$ C) $-2 x^{2}-3 x-4$ D) $-2 x^{2}-3 x+4$	8. D
9. Since $3 x+10=(3 x-4)+14,3 x+10$ is odd. (Odd \#+14 = odd \#.) A) positive B) prime C) odd D) even	9. 9.
10. Yesterday the phone rang at 4 PM or later 80% of the time it rang, and it rang 50 times before 4 PM . Those 50 rings are 20% of all the rings. Thus, the phone rang 250 times yesterday. A) 200 B) 250 C) 300 D) 400	10. B
11. Let the ages of the 5 trees be $t, t-2, t-4, t-6, t-8$. Then $t+(t-2)+$ $(t-4)+(t-6)+(t-8)=4440$. Thus, $5 t-20=4440$, and $t=892$. A) 884 B) 888 C) 890 D) 892	$11 .$ D
Go on to the next page ॥IIIー \boldsymbol{A}	

2012-2013 ALGEBRA COURSE 1 CONTEST SOLUTIONS	Answers
12. A line that passes through the points (p, q) and $(2 p, 3 q)$ has slope $(3 q-q) /(2 p-p)=2 q / p$. The slope between (p, q) and $(3 p, 5 q)$ is also $2 q / p$. A) $(3 p, 4 q)$ B) $(3 p, 5 q)$ C) $(4 p, 6 q)$ D) $(4 p, 8 q)$	$\begin{gathered} 12 . \\ \text { B } \end{gathered}$
13. The multiples of 3 between -9 and 12 include 0 , so their product is 0 . A) -314928 B) -2916 C) 0 D) 2916	$\begin{aligned} & 13 . \\ & \mathrm{C} \end{aligned}$
14. Of children born at the maternity ward yesterday, the ratio of boys to girls was $3 x: 4 y=5: 6$. Thus, $18 x=20 y$ or $9 x=10 y$. Hence, $x: y=10: 9$. A) $10: 9$ B) $24: 15$ C) $15: 24$ D) $4: 5$	14. A
15. $\frac{\left(x^{200}\right)^{400}}{\left(x^{100}\right)^{200}}=\frac{x^{80000}}{x^{20000}}=x^{60000}$. A) x^{4} B) x^{6} C) x^{40000} D) x^{60000}	15. D
16. If the average of x, y, and z is 16 , their sum is $3(16)=48$. If the average of x and y is 12 , their sum is $2(12)=24$. Hence $z=48-24=24$. A) 4 B) 14 C) 20 D) 24	D
17. Both $6 n^{8}$ and $10 n^{12}$ are factors of $30 n^{12}$, the lcm. A) $2 n^{8}$ B) $30 n^{12}$ C) $30 n^{24}$ D) $60 n^{96}$	17. B
18. If the perim. is 64 , each side has length 16 . By Pythag. Th., a diameter is $16 \sqrt{2}$. The area is $(8 \sqrt{2})^{2} \pi=128 \pi$. A) 16π B) 32π C) 64π D) 128π	18. D
19. Since $(x-y)^{2}=3^{2}, x^{2}+y^{2}-2 x y=9$. Hence $485-2 x y=9$, and $x y=238$. A) 162 B) 238 C) 482 D) 3880	19. B
20. The roots of $(x-1)(x+2)(x-3) \times \ldots \times$ $(x-19)(x+20)(x-21)=0$ are $1,-2,3,-4, \ldots, 19$, -20 , and 21 . Their sum is $(1-2)+(3-4)+\ldots$ $+(19-20)+21=-10+21=11$. A) 10 B) 11 C) 21 D) 31	20. B
21. $\|4 x\|+4\|-x\|=4\|x\|+4\|x\|=8\|x\|$. A) 0 B) 8 C) $8\|x\|$ D) $4\|4 x\|$	$21 .$ C
22. $\sqrt{36^{64}}=\sqrt{\left(36^{32}\right)\left(36^{32}\right)}=36^{32}$. A) 6^{8} B) 6^{32} C) 36^{8} D) 3632	$22 .$

